
Nashorn script security permissions
Nashorn script security permissions

When you call " " method on passing a String or a Reader, the script is treated as untrusted and so it gets only permissions given to eval ScriptEngine
"sandbox" code. This is true for ECMAScript builtin function as well. The evaluated nashorn script does inherit permissions of the calling Java eval not
code! This is because nashorn script engine receives script whose origin URL is unknown to the engine!

So, how can we grant security permissions to specific scripts? We may have trusted local scripts - for which we may want to grant more permissions
compared to sandbox scripts.

URLReader

Instead of passing a String or any other Reader to "eval" method, you can pass an instance of . URLReader jdk.nashorn.api.scripting.URLReader
constructor accepts a . You can then grant permissions to a specific script by using URL of the script in your security policy file. The following sample URL
code demonstrates the use of URLReader. The following files Main.java, test.js and test.policy are assumed to stored under "D:\test" directory on a
Windows machine. You may want to adjust security policy file – if you store these under a different directory (or in a different OS).

Main.java

import java.io.*;
import java.nio.file.*;
import javax.script.*;
import jdk.nashorn.api.scripting.*;

public class Main {
 public static void main(String[] args) throws Exception {
 ScriptEngineManager m = new ScriptEngineManager();
 ScriptEngine e = m.getEngineByName("nashorn");
 if (args.length == 0) {
 System.err.println("Usage: java Main <script_file>");
 return;
 }

 // args[0] is script file to which permissions are granted
 // in security policy
 File file = new File(args[0]);

 // read the file content and pass a String to 'eval'
 // The script is untrusted as nashorn does not know the origin!
 try {
 e.eval(new String(Files.readAllBytes(file.toPath())));
 } catch (SecurityException se) {
 System.out.println(se);
 }

 // create a Reader over the file and pass to 'eval'
 // The script is untrusted as nashorn does not know the origin!
 try {
 e.eval(new FileReader(file));
 } catch (SecurityException se) {
 System.out.println(se);
 }

 // pass a URLReader on file - script will get permissions
 // configured in security policy!
 e.eval(new URLReader(file.toURL()));
 }
}

https://docs.oracle.com/javase/8/docs/api/javax/script/ScriptEngine.html#eval-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/javax/script/ScriptEngine.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://docs.oracle.com/javase/8/docs/jdk/api/nashorn/jdk/nashorn/api/scripting/URLReader.html
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html

test.js

var File = java.io.File;
// list contents of the current directory!
for each (var f in new File(".").list())
 print(f)

test.policy

// give AllPermission for Main class (or any class in that directory!)
grant codeBase "file:///d:/test" {
 permission java.security.AllPermission;
};

// give AllPermission to test.js script
grant codeBase "file:///d:/test/test.js" {
 permission java.security.AllPermission;
};

$ javac Main.java

$ java -Djava.security.manager -Djava.security.policy=./test.policy Main test.js

java.security.AccessControlException: access denied (" .FilePermission" "." "read")java.io
java.security.AccessControlException: access denied (" .FilePermission" "." "read")java.io
Main.class
Main.java
test.js
test.policy

As you can see from the above example, SecurityException is thrown when "eval" was called with a String or a FileReader. But, if you pass a URLReader,
nashorn will associate that URL with the script and therefore security permissions are granted as per your security policy. This allows trusted scripts be
granted with more permissions.

load and loadWithNewGlobal builtin functions

Nashorn supports ' ' builtin extension function. This can be called from a script to load another script from a URL or a File. When script is loaded with load
"load" call, Nashorn associates URL/File origin to the script and therefore permissions are granted as per the current security policy. This is another way to
grant security permissions to specific scripts. is another nashorn builtin extension function. This can also be used to load script from a loadWithNewGlobal
URL or a File. Nashorn will associate script URL/File origin to the script and so permissions are granted as per the current security policy.

Summary of various ways of loading/evaluating scripts and security implications:

javax.script APIs and : These scripts are treated as sandbox code - except for engine.eval(String) engine.eval(Reader) jdk.nashorn.api.
. If you pass , script origin based on that associated is used. So, security permissions are based on the scripting.URLReader URLReader URL

script origin URL.

ECMAScript builtin function: Script is treated as "sandbox" and hence gets only sandbox permissions.eval

load function with a file File/URL: This method and command line method both associate a URL/File origin for the script and hence script URL
/File based fine-grained permission can be used. When you run with security manager on, you can specify permissions for specific script URLs or
file: URLs

load from a script object like This is equivalent to "eval" - but it associates a name with script and so stack load({ name: "foo", script: str}):
traces will have nice readable name instead of <eval>. "str" may be computed or a literal. It does not matter. But, script is treated as 'sandbox'.

loadWithNewGlobal function: This is similar to load [all options are load available]. The difference is that it creates a new EMCAScript global
scope and loads your code into that global. This avoids global namespace pollution. Note that security access permission is based on script origin
URL or File if you pass a URL or a File.

http://java.io
http://java.io
https://wiki.openjdk.java.net/display/Nashorn/Nashorn+extensions#Nashornextensions-load
https://wiki.openjdk.java.net/display/Nashorn/Nashorn+extensions#Nashornextensions-loadWithNewGlobal

loadWithNewGlobal from a script object like : The script is treated as a sandbox.loadWithNewGlobal({ name: "foo", script: str})

javax.script APIs and : This is similar to the other methods in that engine.eval(Reader, Bindings) engine.eval(String, Bindings) engine.eval
these are sandbox script evaluations unless Reader is a . But, these methods create/associate a fresh ECMAScript global and load URLReader
code there [similar to in that sense]loadWithNewGlobal

	Nashorn script security permissions

