
Main

Project Loom is to intended to explore, incubate and deliver Java VM features and APIs built on
top of them for the purpose of supporting easy-to-use, high-throughput lightweight concurrency and
new programming models on the Java platform. This is accomplished by the addition of the
following constructs:

Virtual threads
Delimited continuations
Tail-call elimination

This project is sponsored by the .OpenJDK HotSpot Group

Source Code

https://github.com/openjdk
/loom

Early Access Binaries

http://jdk.java.net/loom/

Resources

State of Loom

On the Performance of User-
Mode Threads and
Coroutines

More on inside.java

Talks

Joker 2020 - Video

AccentoDev 2020 - Video

Devoxx BE 2019 - Video

JVMLS 2019 - Video

Curry On 2019 - Video

QCon London 2019 - Video
and Slides

FOSDEM 2019 - Video

Devoxx BE 2018 - | Video Sli
des

JVMLS 2018 – | Video Slides

JFokus 2018 – Video

Meetings

October 2018 - Slides

Mailing List

Subscribe | Archive

http://openjdk.java.net/
http://openjdk.java.net/groups/hotspot/
https://github.com/openjdk/loom
https://github.com/openjdk/loom
http://jdk.java.net/loom/
http://cr.openjdk.java.net/~rpressler/loom/loom/sol1_part1.html
https://inside.java/2020/08/07/loom-performance/
https://inside.java/2020/08/07/loom-performance/
https://inside.java/2020/08/07/loom-performance/
https://inside.java/tag/loom
https://www.youtube.com/watch?v=7GLVROqgQJY
https://youtu.be/23HjZBOIshY
https://youtu.be/lIq-x_iI-kc
https://www.youtube.com/watch?v=NV46KFV1m-4
https://youtu.be/r6P0_FDr53Q
https://www.infoq.com/presentations/continuations-java/
https://www.infoq.com/presentations/continuations-java/
https://youtu.be/FXpDqmSq_zM
https://www.youtube.com/watch?v=vbGbXUjlRyQ
http://cr.openjdk.java.net/~alanb/loom/Devoxx2018.pdf
http://cr.openjdk.java.net/~alanb/loom/Devoxx2018.pdf
https://youtu.be/J31o0ZMQEnI
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
https://youtu.be/fpyub8fbrVE
http://cr.openjdk.java.net/~alanb/loom/LoomMeeting20181018.pdf
http://mail.openjdk.java.net/mailman/listinfo/loom-dev
http://mail.openjdk.java.net/pipermail/loom-dev/

1.

2.

3.

Supported Platforms
Download and Build from Source
How to Contribute

How to run the JDK tests
Missing Features
Continuations

Design
Implementation

Virtual Threads
Design
Implementation
Debugging

Tail Calls
Design
Implementation

Supported Platforms

Mac and Linux on x86-64

Download and Build from Source

$ git clone https://github.com/openjdk/loom
$ cd loom
$ git checkout fibers
$ sh configure
$ make images

How to Contribute

The most valuable way to contribute at this time is to try out the current prototype and provide feedback and bug reports to the loom-dev mailing
list. In particular, we welcome feedback that includes a brief write-up of experiences adapting existing libraries and frameworks to work with Fibers.

If you have a login on the JDK Bug System then you can also submit bugs directly. We plan to use an Affects Version/s value of "repo-loom" to track
bugs.

How to run the JDK tests

Download (the JDK test harness) and place its subdirectory on your path.jtreg bin

Create a debug JDK configuration (inside the top directory of the Loom repo) and build it. This step requires having on your path, or jtreg
running the tests would fail:

$ sh configure --with-jtreg --with-debug-level=fastdebug
$ make images

Project

Proposal | JEP | | Members P
age

Note

Loom is under active development,
which means that information and
advice given here might change in
the future.

https://openjdk.java.net/jtreg/
http://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
http://openjdk.java.net/census#loom
http://openjdk.java.net/projects/loom/
http://openjdk.java.net/projects/loom/

3. Run the tests. The following example assumes a Mac build (replace with for a Linux build), and the macosx linux java/lang
 test, which contains some basic tests. The directory contains /Continuation/Basic.java Continuation java/lang/Continuation

Continuation test, while the directory contains fiber tests. Supplying just the directory name runs all tests in the java/lang/Continuation
directory.

$ make run-test TEST=open/test/jdk/java/lang/Continuation/Basic.java CONF=macosx-x86_64-server-
fastdebug

Missing Features

Yielding while a native VM frame is on the stack in the case of a priviliged action, reflective invocation and invocation.MethodHandle
Cloning continuations
Serialization of fiber/continuation

Continuations

Design

The primitive continuation construct is that of a (AKA multiple-named-prompt), stackful, one-shot (non-reentrant) delimited continuation. The scoped
continuation can be cloned, and thus used to implement reentrant delimited continuations. The construct is exposed via the java.lang.

 class. Continuations are intended as a low-level API, that application authors are not intended to use directly. They will use higher-Continuation
level constructs built on top of continuations, such as fibers or generators.

A continuation object is constructed by passing two arguments to the constructor: a target that serves as the body of the continuation, and Runnable
a . The scope is the delimited continuation's prompt, that allows continuations to be nested. One could think of java.lang.ContinuationScope
such "scoped continuations" as nested blocks, where the scope is the type of the exception thrown, which determines the handler called.try/catch

A continuation is started by calling , which would start executing the body in the continuation's target, and returns either when Continuation.run
the continuation terminates (the body runs to completion, and terminates either normally or abnormally), or when it yields on the continuation's scope.
To query the reason for returning, use , which returns if the body has terminated, or if it has yielded.run Continuation.isDone true false

A call to the static suspends the current continuation and all enclosing continuations up until the innermost one with the Continuation.yield
scope passd to , causing the method of that continuation to return.yield run

The scoping mechanism means that not only are Loom's continuations composable, but they are also well encapsulated. By keeping the scope object
hidden (say, in a private static field), a construct using implementations can prevent its continuations from being yielded directly and circumventing the
construct's API (e.g. it is impossible to directly yield a fiber's continuation because the scope of those continuations is private to the fiber
implementation).

The class does not provide a mechanism of communication between and (i.e., neither takes or returns a value that is Continuation run yield
passed to/received from the other), unlike most implementations of delimited continuations. However, implementing a class that does allow this kind of
communication on top of the class is straightforward, and will likely be included in the JDK.Continuation

Implementation

The current prototype limits the situation in which a continuation can be yielded: a continuation cannot yield while a native method is on its stack (i.e.
on the stack used by the continuation body when it attempts to yield) – this can happen when a VM or a JNI method is called from the continuation
body and then calls back into Java code that attempts to yield – or while the body of the continuation holds a native monitor (i.e. a yield is called –
directly or indirectly – from inside a synchronized method or a synchronized block). In these situations, the continuation is said to be (to the pinned
mounted thread). Attempting to yield while pinned results in a call to the protected method , which by default throws an Continuation.onPinned
exception (fibers override this behavior; see below).

It is likely that we will never support yielding with a JNI method on the stack, but we will support most common cases of VM methods – privileged
actions (this may be resolved by implementing that security feature in Java), reflective invocation (this may also be a non-issue, as reflection does
support a pure Java path by generating bytecode), and invocation. It is not yet decided whether or not we will choose to support MethodHandle
yielding while holding native monitors.

The class is implemented natively in Hotspot (except for scoping; that is implemented in Java). Every continuation has its own stack. Continuation
From the perspective of the implementation, starting or continuing a continuation it and its stack on the current thread – conceptually mounts
concatenating the continuation's stack to the thread's – while yielding a continuation or it.unmounts dismounts

The current prototype implements the mount/dismount operations by copying stack frames from the continuation stack – stored on the Java heap as
two Java arrays, an array for the references on the stack and a primitive array for primitive values and metadata. Copying a frame from the Object
thread stack (which we also call the stack, or the) to the continuation stack (also, the stack, or the) is called vertical v-stack horizontal h-stack freezing
it, while copying a frame from the h-stack to the v-stack is called . The prototype also optionally thaws just a small portion of the h-stack when thawing
mounting using an approach called ; see the JVMLS 2018 talk as well as the section on performance for more detail.lazy copy

http://blog.paralleluniverse.co/2015/08/07/scoped-continuations/

Hypothetically, the most efficient implementation of the mounting operations involves merely linking the current thread stack to the continuation's (with
dismounting translating to unlinking). When a continuation is mounted, its body executes "in" (i.e. using) the continuation's stack. The current
prototype, however, employs copying due to technical constraints which make implementing the linking approach costly. Some of Hotspot's GCs
cannot easily support heap objects that can store references in memory offsets that change throughout the lifetime of the heap object; changing that
assumption would require deep changes to some of Hotspot's GCs. Storing h-stacks in some special off-heap memory area would not help because
this means that the GCs would need to scan them (like they scan thread stacks) – which is potentially a slow operation, especially given the need to
support a very large number of continuations – sometimes even during stop-the-world (STW) phases, like young-gen collection. Ordinarily, heap
objects do not need to be scanned because writing to them updates efficient GC data-structures, but those updates (called write barriers) are not
executed for stack writes in the execution "engines" (the interpreter and compilers); inserting those barriers when running a continuation body would
require changing all four OpenJDK execution engines: the interpreter, C1, C2 and Graal. This, too, is costly.

However, we believe we can make the copying approach efficient enough, and that complex changes to the GC or the execution engines will prove
unnecessary.

Performance

Current yield/continue performance is far from stellar. The reason is that we focused on getting a working prototype using existing Hotspot
mechanisms, some of which have not been designed to be used so frequently. We are now working on improving performance both by optimizing the
actual freeze/thaw logic, as well as optimizing those existing VM mechanisms.

One mechanism that is particularly slow is the one used to detect whether a frame is holding a native monitor (synchronized block). Because this
mechanism is so slow, the monitor detection can be turned off (which will break fiber code that runs through synchronized blocks) by adding -XX:-

 to the command line.DetectLocksInCompiledFrames java

An important performance feature is lazy-copying of frames. This feature is currently turned off by default. To turn lazy copying on, add -XX:+Unlock
 to the command line. -XX:+UseNewCodeDiagnosticVMOptions java

Virtual Threads

Design

Virtual threads are threads that are scheduled by the Java virtual machine rather than the operating system. Virtual threads allow synchron
ous (blocking) code to be efficiently scheduled, so that it performs as well as asynchronous code, but is
simpler to read and write, debug, monitor and profile. There is a tension in the design of virtual threads
between attempting to run as much existing code as possible and our desire to take the opportunity to
rethink how modern threads should work, with an eye to new software requirements, programming styles
and new/changing hardware.

In the current prototype, virtual threads are implemented by the java.lang.Thread API. The Thread API has been updated to define static factory
methods and a builder API to create and start virtual threads. With a few exceptions (like the deprecated suspend and resume methods), the Thread
API works as before. All threads locals (ThreadLocal, InheritedThreadLocal, thread context class loader, ...) are virtual thread local. It is possible to
use the new APIs to create virtual threads that do not support thread locals.

Project Loom is exploring some of the concepts of so that virtual thread are scheduled in a scope that can not be exited until Structured Concurrency
all threads (or tasks) scheduled in the scope have terminated (or completed). There is also interoperability with code using the java.util.concurrent.
ExecutorService and CompletableFuture APIs.

To allow existing code to run in the context of a virtual thread, the current prototype emulates Thread.currentThread() so that the existing Thread APIs,
ThreadLocal, InheritedThreadLocal etc. work as before. In essence, all locals are fiber local.

Implementation

Virtual threads are implemented in the core libraries. A virtual thread is implemented as a continuation that is wrapped as a task and scheduled by a j.
. Parking (blocking) a virtual thread results in yielding its continuation, and unparking it results in the continuation being resubmitted to u.c.Executor

the scheduler. The scheduler worker thread executing a virtual thread (while its continuation is mounted) is called a thread.carrier

The continuations used in the virtual thread implementation override so that if a virtual thread attempts to park while its continuation is onPinned
pinned (see above), it will block the underlying carrier thread.

The implementation of the networking APIs in the and packages have as been updated so that virtual threads doing java.net java.nio.channels
blocking I/O operations park, rather than block in a system call, when a socket is not ready for I/O. When a socket is not ready for I/O it is registered
with a background multiplexer thread. The virtual thread is then unpacked when the socket is ready for I/O.

Debugging

See the page.Virtual Thread Debugging Support

Tail Calls

Design

https://wiki.openjdk.java.net/display/loom/Structured+Concurrency
https://wiki.openjdk.java.net/display/loom/Virtual+Thread+Debugging+Support

We envision tail-call elimination that pops one or perhaps even an arbitrary number of stack frames at explicitly marked call-sites. It is not the intention
of this project to implement tail-call optimization.automatic

Implementation

The implementation of this feature requires cross-cutting changes to the VM, VM specification (bytecode), and possibly the front-end Java compiler
(javac). As a result, in order not to delay the completion of continuations and fibers, we will only begin specifying and implementing this feature only
when the project is at a more advanced phase.

	Main

